Conformational reorganization of the four-helix bundle of human apolipoprotein E in binding to phospholipid.
نویسندگان
چکیده
Conformational reorganization of the amino-terminal four-helix bundle (22-kDa fragment) of apolipoprotein E (apoE) in binding to the phospholipid dimyristoylphosphatidylcholine (DMPC) to form discoidal particles was investigated by introducing single, double, and triple interhelical disulfide bonds to restrict the opening of the bundle. Interaction of apoE with DMPC was assessed by vesicle disruption, turbidimetric clearing, and gel filtration assays. The results indicate that the formation of apoE.DMPC discoidal particles occurs in a series of steps. A triple disulfide mutant, in which all four helices were tethered, did not form complexes but could release encapsulated 5-(6)-carboxylfluorescein from DMPC vesicles, indicating that the initial interaction does not involve major reorganization of the helical bundle. Initial interaction is followed by the opening of the four-helix bundle to expose the hydrophobic faces of the amphipathic helices. In this step, helices 1 and 2 and helices 3 and 4 preferentially remain paired, since these disulfide-linked mutants bound to DMPC in a manner similar to that of the 22-kDa fragment of apoE4. In contrast, mutants in which helices 2 and 3 and/or helices 1 and 4 paired bound poorly to DMPC. However, all single and double helical pairings resulted in the formation of larger discs than were formed by the 22-kDa fragment, indicating that further reorganization of the helices occurs following the initial opening of the four-helix bundle in which the protein assumes its final lipid-bound conformation. In support of this rearrangement, reducing the disulfide bonds converted the large disulfide mutant discs to normal size.
منابع مشابه
Engineering conformational destabilization into mouse apolipoprotein E. A model for a unique property of human apolipoprotein E4.
Apolipoprotein (apo) E4 is a major risk factor for Alzheimer and cardiovascular diseases. ApoE4 differs from the two other common isoforms (apoE2 and apoE3) by its lower resistance to denaturation and greater propensity to form partially folded intermediates. As a first step to determine the importance of stability differences in vivo, we reengineered a partially humanized variant of the amino-...
متن کاملLipid binding-induced conformational changes in the N-terminal domain of human apolipoprotein E.
The N-terminal domain of human apolipoprotein E3 (apoE3) adopts an elongated, globular four helix bundle conformation in the lipid-free state. Upon lipid binding, the protein is thought to undergo a significant conformational change that is essential for manifestation of its low density lipoprotein receptor recognition properties. We have used fluorescence resonance energy transfer (FRET) to ch...
متن کاملApolipoprotein A-V N-terminal domain lipid interaction properties in vitro explain the hypertriglyceridemic phenotype associated with natural truncation mutants.
The N-terminal 146 residues of apolipoprotein (apo) A-V adopt a helix bundle conformation in the absence of lipid. Because similarly sized truncation mutants in human subjects correlate with severe hypertriglyceridemia, the lipid binding properties of apoA-V(1-146) were studied. Upon incubation with phospholipid in vitro, apoA-V(1-146) forms reconstituted high density lipoproteins 15-17 nm in d...
متن کاملClioquinol-induced ordered conformational behavior in alpha-synuclein: promising relevance for therapeutic approach to Parkinson's disease
Parkinson?¦s disease (PD) is a devastating and an intricate complex neurological disorder that results from the progressive degeneration of nerve cells in Substantia nigra that controls movement. The pathological hallmark of PD is the formation of insoluble protein aggregates known as lewey bodies. Alpha-synuclein is the major constituent of these fibrillar structures. Alpha-synuclein a 140 ami...
متن کاملStructural basis for the conformational adaptability of apolipophorin III, a helix-bundle exchangeable apolipoprotein.
The high-resolution NMR structure of apolipophorin III from the sphinx moth, Manduca sexta, has been determined in the lipid-free state. We show that lipid-free apolipophorin III adopts a unique helix-bundle topology that has several characteristic structural features. These include a marginally stable, up-and-down helix bundle that allows for concerted opening of the bundle about "hinged" loop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 275 27 شماره
صفحات -
تاریخ انتشار 2000